Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203812

RESUMO

The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.


Assuntos
Envelhecimento , Qualidade de Vida , Adolescente , Humanos , Envelhecimento/genética , Expectativa de Vida , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética
2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768737

RESUMO

Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.


Assuntos
Melanoma , Recidiva Local de Neoplasia , Humanos , Melanoma/tratamento farmacológico , Terapia Combinada , Células Matadoras Naturais , Imunoterapia/métodos
3.
Bioengineering (Basel) ; 9(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36354566

RESUMO

We investigated the features of the morphology and cytokine profiles of neuroblastoma SH-SY5Y cells, bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs), and peripheral blood mononuclear cells (PBMCs) in double (BM-MSCs + SH-SY5Y cells) and triple (BM-MSCs + SH-SY5Y cells + PBMCs) co-cultures incubated on plastic and Matrigel. Cells in the co-cultures communicated by vesicular transport and by exchanging membrane and cytoplasmic components. The cytokine profile of double and triple co-cultures incubated on Matrigel and plastic had differences and showed the highest concentration of a number of chemokines/cytokines, such as CXCL8/IL-8, I-TAC/CXCL11, IP10/CXCL10, MDC/CCL22, MIP-1α/CCL3, IL-1ß, ENA-78/CXCL5, Gro-α/CXCL1, MCP-1/CCL2, TERC/CCL25, CXCL8/IL-8, and IL-6. High concentrations of inflammatory chemokines/cytokines in the conditioned medium of triple co-culture form a chronic inflammation, which brings the presented co-cultivation system closer to a natural tumor. Triple co-cultures were more resistant to cisplatin (CDDP) than the double- and monoculture of SH-SY5Y. The mRNA levels of BCL2, BCL2L1, RAC1, CAV1, CASP3, and BAX genes were changed in cells after co-culturing and CDDP treatment in double and triple co-cultures. The expression of the BCL2, BAX, CAV1, and CASP3 proteins in SH-SY5Y cells after the triple co-culture and CAV1 and BAX protein expression in SH-SY5Y cells after the double co-culture were determined. This study demonstrated the nature of the cellular interactions between components of tumor niche and the intercellular influence on chemoresistance observed in our tumor model, which should enable the development of novel test systems for anti-tumor agents.

4.
Bionanoscience ; 12(2): 293-301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261871

RESUMO

At present, there is an increasing interest in the potential role of extracellular vesicles (EVs), acting as multi-signal messengers of the tumor stroma, in the development and progression of tumor. Tumor cell-derived EVs are considered a potential vector for the targeted delivery of antitumor agents due to the ability to fuse with parental cells through endocytosis and release their contents into the cytoplasm of the recipient cell. Tumor cell-derived EVs could be also used for priming immune cells and therapeutic vaccine development. It is also known that mesenchymal stem cells (MSCs) have a tropism toward tumor niches. It is believed that MSC migration to the tumor is due to its inflammatory signaling. Presumably, with the accumulation of MSCs at tumor sites, these cells differentiate into pericytes or tumor-associated fibroblasts, thereby forming a supporting tumor growth microenvironment. However, besides the ability to promote tumor progression, MSCs can also suppress its growth by inhibiting proliferation and cell cycle progression, and angiogenesis. Thus, the further studies of the MSC role in TME and MSC interaction with other cells of the tumor stroma, including through EVs, are of particular interest. To increase the yield of vesicles the isolation method based on pharmacological disorganization of the actin cytoskeleton induced by treating with cytochalasin B was used in this study. In this investigation the interaction of SH-SY5Y neuroblastoma cell-derived membrane vesicles, obtained using cytochalasin B (CIMVs), with human bone marrow-derived MSCs was analyzed using imaging flow cytometry. Using transmission electron microscopy, it was shown that CIMVs have a size similar to that of natural microvesicles, which is 100-1000 nm. Using imaging flow cytometry, it was shown that after 24 h of co-cultivation 6% of the MSCs contained a large number of CIMVs, and 42% of the MSCs contained a small amount of CIMVs. Cultivation of MSCs with SH-SY5Y cell-derived CIMVs also induced dose-dependent decrease in the expression of CD markers typical for MSCs. Thus, the internalization of SH-SY5Y cell-derived CIMVs within MSCs and the ability of the CIMVs to modulate immunophenotype of the recipient cells were shown. However, further studies are required to determine the effect of CIMVs on pro- or antioncogenic phenotype and function of MSCs.

5.
Front Oncol ; 11: 730824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631558

RESUMO

The development of immunotherapeutic methods for the treatment of oncological diseases have made it possible to improve the effectiveness of standard therapies. There was no breakthrough after first using of personalized therapeutic vaccines based on dendritic cells in clinical practice. A deeper study of the biology of dendritic cells, as well as the use of new approaches and agents for antigenic work, have made it possible to expand the field of application of dendritic cell (DC) vaccines and improve the indicators of cancer patients. In addition, the low toxicity of DC vaccines in clinical trials makes it possible to use promising predictions of their applicability in wider clinical practice. This review examines new approaches and recent advances of the DC vaccine in clinical trials.

6.
Inflamm Bowel Dis ; 27(3): 418-433, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32766755

RESUMO

BACKGROUND: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS: Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.


Assuntos
Disbiose , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Disbiose/etnologia , Fezes , Humanos , Doenças Inflamatórias Intestinais/etnologia , Tartaristão
7.
Biomedicines ; 8(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348704

RESUMO

The search for an effective drug to treat oncological diseases, which have become the main scourge of mankind, has generated a lot of methods for studying this affliction. It has also become a serious challenge for scientists and clinicians who have needed to invent new ways of overcoming the problems encountered during treatments, and have also made important discoveries pertaining to fundamental issues relating to the emergence and development of malignant neoplasms. Understanding the basics of the human immune system interactions with tumor cells has enabled new cancer immunotherapy strategies. The initial successes observed in immunotherapy led to new methods of treating cancer and attracted the attention of the scientific and clinical communities due to the prospects of these methods. Nevertheless, there are still many problems that prevent immunotherapy from calling itself an effective drug in the fight against malignant neoplasms. This review examines the current state of affairs for each immunotherapy method, the effectiveness of the strategies under study, as well as possible ways to overcome the problems that have arisen and increase their therapeutic potentials.

8.
Front Med (Lausanne) ; 7: 576221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195324

RESUMO

Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.

9.
Front Cell Dev Biol ; 8: 402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582698

RESUMO

Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.

10.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526987

RESUMO

Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.


Assuntos
Imunoterapia/métodos , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/terapia , Animais , Carcinógenos/toxicidade , Humanos , Hospedeiro Imunocomprometido , Isoenxertos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Artigo em Inglês | MEDLINE | ID: mdl-32328489

RESUMO

The development of new high-tech systems for screening anticancer drugs is one of the main problems of preclinical screening. Poor correlation between preclinical in vitro and in vivo data with clinical trials remains a major concern. The choice of the correct tumor model at the stage of in vitro testing provides reduction in both financial and time costs during later stages due to the timely screening of ineffective agents. In view of the growing incidence of oncology, increasing the pace of the creation, development and testing of new antitumor agents, the improvement and expansion of new high-tech systems for preclinical in vitro screening is becoming very important. The pharmaceutical industry presently relies on several widely used in vitro models, including two-dimensional models, three-dimensional models, microfluidic systems, Boyden's chamber and models created using 3D bioprinting. This review outlines and describes these tumor models including their use in research, in addition to their characteristics. This review therefore gives an insight into in vitro based testing which is of interest to researchers and clinicians from differing fields including pharmacy, preclinical studies and cell biology.

12.
Neural Regen Res ; 15(4): 586-596, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638080

RESUMO

Extracellular vesicles, including exosomes and microvesicles, play a fundamental role in the activity of the nervous system, participating in signal transmission between neurons and providing the interaction of central nervous system with all body systems. In many neurodegenerative diseases, neurons pack toxic substances into vesicles and release them into the extracellular space, which leads to the spread of misfolded neurotoxic proteins. The contents of neuron-derived extracellular vesicles may indicate pathological changes in the central nervous system, and the analysis of extracellular vesicle molecular content contributes to the development of non-invasive methods for the diagnosis of many central nervous system diseases. Extracellular vesicles of neuronal origin can be isolated from various biological fluids due to their ability to cross the blood-brain barrier. Today, the diagnostic potential of almost all toxic proteins involved in nervous system disease pathogenesis, specifically α-synuclein, tau protein, superoxide dismutase 1, FUS, leucine-rich repeat kinase 2, as well as some synaptic proteins, has been well evidenced. Special attention is paid to extracellular RNAs mostly associated with extracellular vesicles, which are important in the onset and development of many neurodegenerative diseases. Depending on parental cell type, extracellular vesicles may have different therapeutic properties, including neuroprotective, regenerative, and anti-inflammatory. Due to nano size, biosafety, ability to cross the blood-brain barrier, possibility of targeted delivery and the lack of an immune response, extracellular vesicles are a promising vehicle for the delivery of therapeutic substances for the treatment of neurodegenerative diseases and drug delivery to the brain. This review describes modern approaches of diagnosis and treatment of central nervous system diseases using extracellular vesicles.

13.
Pharmaceutics ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698727

RESUMO

The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of multicistronic vectors have been described for the development of new methods of treatment of various human diseases, including cardiovascular, oncological, metabolic, autoimmune, and neurodegenerative disorders. The safety and effectiveness of the joint delivery of therapeutic genes in multicistronic vectors based on the internal ribosome entry site (IRES) and self-cleaving 2A peptides have been shown in both in vitro and in vivo experiments as well as in clinical trials. Co-expression of several genes in one vector has also been used to create animal models of various inherited diseases which are caused by mutations in several genes. Multicistronic vectors provide expression of all mutant genes, which allows the most complete mimicking disease pathogenesis. This review comprehensively discusses multicistronic vectors based on IRES nucleotide sequence and self-cleaving 2A peptides, including its features and possible application for the treatment and modeling of various human diseases.

14.
Front Physiol ; 9: 1663, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524313

RESUMO

Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by ß-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the "infantile form," which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and ß HexA subunit genes. Effectiveness of this approach is evaluated in α or ß HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.

15.
Biomedicines ; 6(4)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257488

RESUMO

Recombinant viruses are novel therapeutic agents that can be utilized for treatment of various diseases, including cancers. Recombinant viruses can be engineered to express foreign transgenes and have a broad tropism allowing gene expression in a wide range of host cells. They can be selected or designed for specific therapeutic goals; for example, recombinant viruses could be used to stimulate host immune response against tumor-specific antigens and therefore overcome the ability of the tumor to evade the host's immune surveillance. Alternatively, recombinant viruses could express immunomodulatory genes which stimulate an anti-cancer immune response. Oncolytic viruses can replicate specifically in tumor cells and induce toxic effects leading to cell lysis and apoptosis. However, each of these approaches face certain difficulties that must be resolved to achieve maximum therapeutic efficacy. In this review we discuss actively developing approaches for cancer therapy based on recombinant viruses, problems that need to be overcome, and possible prospects for further development of recombinant virus based therapy.

16.
Front Immunol ; 9: 1534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018618

RESUMO

Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example, promoting angiogenesis, tumor cell invasion, and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor-derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry major histocompatibility complex class I and class II/peptide complexes and are able to prime other immune system cell types and activate an antitumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood-brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies.

17.
Front Pharmacol ; 9: 259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615915

RESUMO

Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...